Package: CooccurrenceAffinity 1.0

CooccurrenceAffinity: Affinity in Co-Occurrence Data

Computes a novel metric of affinity between two entities based on their co-occurrence (using binary presence/absence data). The metric and its MLE, alpha hat, were advanced in Mainali, Slud, et al, 2021 <doi:10.1126/sciadv.abj9204>. Various types of confidence intervals and median interval were developed in Mainali and Slud, 2022 <doi:10.1101/2022.11.01.514801>.

Authors:Kumar Mainali [aut, cre], Eric Slud [aut]

CooccurrenceAffinity_1.0.tar.gz
CooccurrenceAffinity_1.0.zip(r-4.5)CooccurrenceAffinity_1.0.zip(r-4.4)CooccurrenceAffinity_1.0.zip(r-4.3)
CooccurrenceAffinity_1.0.tgz(r-4.4-any)CooccurrenceAffinity_1.0.tgz(r-4.3-any)
CooccurrenceAffinity_1.0.tar.gz(r-4.5-noble)CooccurrenceAffinity_1.0.tar.gz(r-4.4-noble)
CooccurrenceAffinity_1.0.tgz(r-4.4-emscripten)CooccurrenceAffinity_1.0.tgz(r-4.3-emscripten)
CooccurrenceAffinity.pdf |CooccurrenceAffinity.html
CooccurrenceAffinity/json (API)

# Install 'CooccurrenceAffinity' in R:
install.packages('CooccurrenceAffinity', repos = c('https://kpmainali.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/kpmainali/cooccurrenceaffinity/issues

On CRAN:

4.19 score 26 stars 12 scripts 174 downloads 18 exports 33 dependencies

Last updated 2 years agofrom:37a2c58a18. Checks:OK: 3 NOTE: 4. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-winNOTENov 15 2024
R-4.5-linuxNOTENov 15 2024
R-4.4-winNOTENov 15 2024
R-4.4-macNOTENov 15 2024
R-4.3-winOKNov 15 2024
R-4.3-macOKNov 15 2024

Exports:AcceptAffCIAcceptAffinaffinityaffinity2by2AlphIntsBisectCovrgCovrgPlotdataprepEHypMidPEHypQuIntlogLikExtHypMaxX.IntmidP.EHypminmaxAlpha.pFNCHMinX.IntML.Alphaplotgg

Dependencies:BiasedUrnclicolorspacecowplotfansifarverggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigplyrR6RColorBrewerRcppreshaperlangscalestibbleutf8vctrsviridisLitewithr